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The combination of iterative methods with preconditionings based on incomplete LU factorizations

constitutes an effective class of methods for solving the sparse linear systems arising from the
discretization of elliptic partial differential equations. In this paper, we show that there are some
settings in which the incomplete LU preconditioners are not effective, and we demonstrate that
their poor performance is due to numerical instability. Our analysis consists of an analytic and

numerical study of a sample two-dimensional non-self-adjoint elliptic problem discretized by several

finite difference schemes.
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1. Introduction

The preconditioned conjugate gradient method [3, 4] and preconditioned iterative methods for
nonsymmetric linear systems [1, 6, 17, 22| are effective methods for solving the large sparse linear
systems arising from the discretization of elliptic partial differential equations. Two good precondi-
tioners are the incomplete LU factorization (ILU) (15] and the modified incomplete LU factorization
(MILU) {5, 11], each of which makes use of an approximate factorization of the coefficient matrix
into the product of a sparse lower triangular matrix, L, and a sparse upper triangular matrix.
U. For the symmetric positive-definite systems derived from the finite difference discretization of -
self-adjoint elliptic problems on a uniform n x n grid, it is known that the MILU preconditioning
produces a reduction of the condition number from O(n?) to O(n). The ILU preconditioning does
not improve the conditioning in this way, but it has been observed empirically to generate a linear
system most of whose eigenvalues are clustered near one. The effectiveness of both techniques for
the nonsymmetric linear systems derived from non-self-adjoint elliptic problems has been demon-
strated in many numerical experiments 2, 7, 8, 20|, although the analysis from the symmetric case
has not been generaliz;ed.

Let 4 denote the coefficient matrix, let @ = LU denote the approximate factorization of A,
and let R = Q — A. Loosely speaking, the analysis for symmetric discretized elliptic equations
examines the effect of R on vectors u whose values come from a smooth function evaluated at the
mesh points. In particular, a heuristic explanation of the difference between the MILU and ILU
factorizations is that the individual entries of the vector Ru satisfy [Ru|; = O(1/n) for the MILU
factorization, whereas [Ru]; = O(1) for the ILU factorization [11]. The MILU factorization has a

higher order of accuracy as an approximation to A than the ILU factorization (see also [18]). In this

sense, the analysis is reminiscent of the notion of “consistency” of difference schemes for ordinary
differential equations {10]. The notion of order of accuracy also extends to the nonsymmetric case
(see e.g. [14]). In this regime, the MILU factorization is also of higher order of accuracy. and it

has been demonstrated to be more effective in many numerical experiments [7, 8.

b £

In this paper, we show that stability can also play a role in the performance of the incomplete !
LU preconditioners when they are applied to discretized non-self-adjoint elliptic equations. We show ]
using a model problem that there are nonsymmetric linear systems that can cause difficulty for o

either the ILU preconditioning or the MILU preconditioning, and that the source of this difficulty is o

instability of the computations involving the triangular factors. Our analysis is similar to stability

analysis for methods for ordinary differential equations [10]. It shows that the performance of
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incomplete factorizations is sensitive to both the values of the coefficients of the elliptic operator
and the choice of difference scheme used to discretize the problem. In Section 2 we present the model
problem and give examples of numerical difficulties exhibited by both preconditioners. In Section 3
we construct constant coefficient approximations to the two factorizations based on an asymptotic
analysis of the values of their coefficients, and in Section 4 we present the stability analysis for
these simplified factorizations. In Section 5, we demonstrate with numerical experiments that the

presence of instability correlates with a degradation of the performance of the preconditioners.

2. The Model Problem and Some Numerical Examples

In this section, we present a model problem and briefly discuss some numerical experiments
that demonstrate some difficulties encountered by the ILU and MILU preconditioners. Consider

the constant coefficient elliptic equation
~Au+2Pu; +2Pu, = f (2.1)

on the unit square 2 = {(z,¥)|0 < z,y < 1}, with Dirichlet boundary conditions v = f on 8Q.

Discretizing (2.1) on an n x n grid gives rise to a sparse linear system of equations

Au=g (2.2)

2

of order ¥ = n®. We consider two difference schemes for approximating the first derivatives in

(2.1). In the first scheme, we use second order centered differences

n Bitlg T Ui-nyg wy Ui j+1 — Ui j-1

Uz N 2h \ 2h ‘

where A = 1/(n + 1). In the second scheme we use first order upwind differences, i.e. backward

differences if the coefficient is positive, forward differences if the coefficient is negative. For the
upwind scheme, we restrict our attention to the case Py, P; > 0, so that the differences are given

by

Uij — Uj-14 Uij = Uij-1 .
Uy R — Uy ¥ ——— S
* h YTk E
For both schemes, we use standard second order centered differences for the Laplacian [9)] {

Uil = 2Uij + Uimy g A 2Uij + U1

]
Au
! 2 x o]

Unless otherwise specified, we order the unknowns along lines in the x-direction, i.e. the indices j‘::‘-'.'
{17} are ordered so that for each j, contiguous unknowns correspond to points whose :-indices vary

from 1 to n. The coefficient matrix has the form
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After scaling the matrix and right hand side by A2, the matrix entries are given by
a=4, b=-(1+p), c=-(1+p2),
d=-1+p, e=—~1+4+p;
for the centered difference scheme, where p; = Pih, p2 = P3h, and by i :
=4+2p+p) b=-(1+2m), c=-(1+2p), -]
d= -1, e=—1 A
for the upwind scheme. . s
We note that in practice the choice of mesh size h may be affected by accuracy considerations 1
and the sizes of the coefficients P, and P;. In particular, if the solution contains a boundary layer, ::5
then with too coarse a mesh the centered difference scheme will produce an oscillatory solution ;
and the upwind scheme may not resolve the boundary layer. See e.g. [19] for a discussion of these e
issues. Our focus in this paper is on the algebraic properties of the matrix equation rather than
the accuracy of the discrete solution. In making this study, we will have occasion to consider some
large values of P;h that may not practical in applications. (See Section 5.) ' :

We will give precise definitions of the two incomplete factorizations under consideration in
Section 3. As evidence that their performance on similar looking problems can vary greatly, we

consider here three instances of equation (2.1):

Problem 1: P, =0, P, =50,
Problem 2: P = P, =50,
Problem 3: P, = -50, P, = 50. <

In each case, the right hand side f of (2.1) is determined so that the solution is

u(z.y) = ze*¥sin(rz)sin(my). (2.4)

3
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We discretize on a 31 x 31 grid using centered differences for the first derivatives. The precondition-
ing is applied from the right, i.e. given the incomplete factorization Q = LU, the preconditioned

problem to be solved is
AQ li =g, u=Q 'i. (2.5)

Using Orthomin(1) [6] as the basic iterative method, we attempt to solve each of the three problems
with both the ILU and the MILU preconditioning. Table 1 contains the number of iterations
of Orthomin(1) needed to satisfy the stopping criterion of ||r;||/|ro]| < 1076 (where ||v|| denotes
the Euclidean norm (v,v)!/?). The symbol co indicates that the residual norms {||r;||} stopped -

decreasing at some point of the iteration, i.e. that the iteration failed to converge to the solution.

ILU MILU
Problem 1. 21 18
Problem 2. o0 7
Problem 3. 32 o)

Table 1: Number of iterations of Orthomin(1) to convergence.

ILU : MILU
Leftmost Rightmost Leftmost Rightmost
Problem 1. 0.172, 0.196 1.31, 1.32 0.240, 0.247 2.589, 2.593
Problem 2. -49.3. -12.6 18.2, 56.1 0.681, 0.681 1.02, 1.03
Problem 3. 0.043. 0.075 1.56, 1.57 -2.90E10, -4.36E8 4.36E8, 2.90E10

Table 2: Leftmost and rightmost eigenvalues of the symmetric

parts of the coefficient matrices.

Note that if the symmetric part, (AQ ™' +.4Q!)/2, of the coefficient matrix in (2.5) is positive-
definite, then Orthomin(1) is guaranteed to generate a sequence of iterates whose residual norms
are strictly decreasing [6, 7|. The symmetric part is indefinite if and only if it has both nonpositive
and nonnegative eigenvalues. In Table 2. we list the two leftmost and two rightmost eigenvalues of

the symmetric parts of the six coefficient matrices tested. This data confirms that the problems

.o .
y .
Aanabin i oo 4 4

in which the failures occurred have indefinite symmetric parts. Taken together. the results from

. G
S Aad 4

the two tables also indicate that, at least when centered differences are used for the discretization : "-‘-f
of (2.1), the performance of the incomplete factorization preconditionings is very sensitive to the Dl
values of the coefficients of the first derivatives. (We remark that the symmetric part of the original Y

matrix A is the discrete Laplacian. which is positive definite [9].)
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3. The Incomplete Factorizations

In this section, we define the ILU and MILU factorizations and construct simplified constant
coefficient approximations to each of them that will lend themselves to a stability analysis. We
consider incomplete factorizations in which the lower and upper triangular factors, L and U, have
the same sparsity structure as the lower and upper parts of A, respectively, and U is unit diagonal.

For the five-diagonal matrix of (2.3), the factors have the form

ay 1 & m
Be o 72
B3
L=1 v+ , U= NN-n
Tn+2
an-i 1 Sya
\ N By an 1

The ILU factorization is defined so that the entries in the product matrix LU are equal to
entries of A whenever the latter are nonzero {15]. Multiplying L and U and setting the coefficients
of the product equal to the appropriate nonzero entries of A gives the following defining equations

for the nonzero entries of L and U:

a 7=1
a— Bjéj_1, 2<j<n
a; =
a = YNj-n, n+1< ;< Nand j=1modn
a— Bjbj—1 — Yjnj~n, n+l1<j<Nandj# 1modn
b J# 1 modn c n+1<j; <N
3; = . v = , (3.1)
0 otherwise 0 otherwise
d/a; J#0mod n efa; 1<j<N-n
0 otherwise 0 otherwise

The MILU factorization is defined so that the nonzero off-diagonal entries of 4 are equal to the
corresponding entries of LU, and the sum of the entries of each row of R = LU — Ais 7h%, 7 > 0.
We restrict our attention to r = 0. (This has been observed to be a good choice in practice {3. 7.

12], although the analysis of MILU is only known to hold for 7 > 0 [5, 11].) The zero row-sum

5
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condition is imposed for the j’th row by subtracting the error occurring in row j of R from the

J'th diagonal, a;. The defining equations are as in (3.1), except the diagonal entries are given by °
a, J=1
a = Bibj— — Binj-1, 2<)<n
a~ B;6—1 — YjNj—n — Bjnj-1, n+l<j<N-nand j=0modn ®
a; = ¢ a~ 36—y = YiNj—n = Vjbj—n, N-n<j<N (3.2)
a~Nj-n = Vbj—n, n+l1<j<Nandj=1modnr
a~ Bjdj—1 = VjNj-n: J=N
o
a~ 3j0j-1 = Yjnj-n — Bjnj-1 ~ 7jbj—n, otherwise.
For the ILU factorization. all but 2n — 1 of the diagonals {¢,} satisfy the last recurrence of
(3.1). For the MILU factorization, all but 4n — 4 diagonals satisfy the last recurrence of (3.2).* To
facilitate an analysis, we construct constant coefficient ILU and MILU factorizations based on an L
asymptotic analysis of these two recurrences. We make use of a relationship between the recurrences
for {a,} and continued fractions.
As motivation, consider the first block (i.e. the first n rows) of the ILU factorization, whose L
. . . L
diagonal entries satisfy
oy = a, aj=a-bd/aj_1, 2<j<n (3.3)
Expanding for the j'th value gives s
bd
aj =a -
. bd j-1 divides. (3.4) ]
.a-bd/a
In the language of continued fractions, «; is the (j — 1)’st approximant of the continued fraction L )
([21] p. 14)
bd . .
- ——— e
bd R
a-— - ,
a— e o j
The convergence of continued fractions (i.e. of the approximants) of this form is well understood.
We state without proof the result we need, which is taken essentially verbatim from [21] (Theorem
8.2, p. 39).
* Actually, with the convention that the off-diagonal entries are zero in the appropriate indices. all the diagonal entries satisfy [ J
the last recurrences of {3.1) or (3.2). We specify the exceptions explicitly to emphasize that there are exceptions.
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Theorem 3.1. The continued fraction

'~
1+ ————— (3.5)
14—
1+
converges for any (complex) number § except when £ = —% — s, where s is real and positive. For

real &, its value is
1+ T ¥4¢€
—_—
To use Theorem 3.1 to examine the convergence of (3.3) or (3.4), consider &; = a;/a. These .

quantities satisfy

2
G=1, &=1-YC scicn
Q-1
With € = —bd/a?, the approximant for &; analogous to (3.4) is the (5 — 1)’st approximant of a

continued fraction of the form (3.5). The convergence result requires that § > -—%, which follows

for both the centered and upwind difference schemes by direct computation. Hence, {&;} converges

to
. 1+ /1 —4bd/a?
a =
2
and {e;} converges to
olV) = gg = 2FVE Z D0 a2 - 4bd. (3.6)

For the centered difference scheme, the limiting value is 2 + /3 + p?, and for the upwind scheme

itis 2+ py + p2+ /(24 p1 + p2)? — (1 +2py). We remark that the limiting value (3.6) is equal to
the larger root obtained by formally substituting a constant value o) in place of a; and oj_; in
{3.3} and solving the resulting quadratic equation for alV,

This argument establishes the convergence of the sequence defined by (3.3) as j — oo, although

it does not prove that the first n values are near the limiting value. Moreover, most of the diagonal

entries of L outside of the first block satisfy the more complicated recurrence given by the last of

the defining equations for {a;}, which for the ILU factorization can be rewritten as

aj =a-bd/aj_y - cefaj_p. (3.7)
We attempt to gain some insight into this recurrence by examining a simplified version of it. By
analogy with the result for the first block, let

2 _ N
a=a+ a 24(bd+ce)‘ (3.9)
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which is the larger root obtained from formally substituting the constant « in place of aj. a,_;

and aj_, in (3.7) and solving for a. Consider the alternative recurrence
a1 =a— cefa, a; =a-cefa—bd/aj_y, j2>2 (3.9),

which is a simplification of (3.7) in which a;_, is replaced by o of (3.8).

Theorem 3.2. Let o be given by (3.8). Then for the values of a, b, ¢, d and e of either difference

scheme, the sequence defined by (3.9} is convergent with limit a. The limiting values are

a=2++/2+ pf + P?z for centered differences.

24 pr+p2+ V1+ (1+p+ p2)? for upwind differences.

[0

i

Proof. The values of o for the two schemes are obtained by substituting into (3.8) the values of a.
b. ¢, d and e from Section 2. The simplified recurrence (3.9) has the same form as the recurrence
of (3.3), with a replaced by a — ce/a. For both schemes, a straightforward computation shows that
a - ce/a is greater than zero and hence nonzero. We apply Theorem 3.1 in the same manner as
above: if £ = —bd/(a — ce/a)? is greater than or equal to —%. then the sequence {a,/(a — ce/a)}

converges to

I+ /11— 4bd/{a~ ce/a)?

9

and {a,} converges to

=

(a —cefa) + \/(a - ce/a)? — 4bd

9

(3.10)

The condition £ > —} is equivalent to hd < Y{a - ce/a)?. To see that the latter inequality

holds for both schemes. first note that & > 2+ /2 > 0. For the centered scheme. we wish to show

that X o

L-p; < 4—'1——(1;1"5)+£<1T")5) A (3.11)
If p2 > 1. then (3.11) holds trivially. If p,:: < 1.then 0 < 1 = p3 < 1. and the right hand <ide of
(3.11) is greater than 4 - ﬁ; > 3. from which the inequality follows. For the upwind scheme. the

condition & > —1 is equivalent to

1

1L«2p\*
L+ 2p) s—<4+2(1)1+1>g;——ﬁ) |

oy

N

But (1 + 2pg)/ < —2—= + py. Inequality (3.12) then follows from Jdirect computation.
p T3 Tl quality P

It remains to show that & = i, i.e. that

(a—ce/a)+ (a—ce/a)t — 4bd

R

y =
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or equivalently. that

V(e = ce/a)? — 4bd = 20 = (a — ce/a). (3.13)

Rewriting the right hand side of (3.13) as (20 — aa+ ce)/a. it can be shown by direct computation
that this quantity is positive for both schemes. Hence, it suffices to show that the square of both

sides of (3.13) are equal, which simplifies to
o - aa + (bd + ce) = 0.

The solution to this equation is « of (3.8). which completes the proof.

Note that we made use of three inequalities in this proof:

l.a — ce/a > 0, which ensures that & is well-defined and figures in the choice of the positive

square root of (@ — ce/a)? in (3.10);

13V]

. 2a - (a - ce/a) > 0, which allows us to square both sides of (3.13):
3.&£> —%. so that Theorem 3.1 can be applied.

For the MILU factorization. we rewrite the last recurrence of (3.2) as
aj=a-b{d+e)/aj_y —c(d+e)/aj_n, {3.14)

The roots of the quadratic equation obtained by substituting o for . a,;_1 and a;_, in (3.14) are

at/a® - 4(b+c)(d +e)
! . (3.15)

Let a denote the root with larger modulus. As above, we examine the simpler recurrence derived

by replacing {a,_,} with a:

ay =a—c(d+e)/a, aj=(a—-c(d+e)/a)=bld+e)/a,_,. J>2. (3.16).
We have the following convergence result:
Theorem 3.3. For either difference scheme. let o denote the larger root given by (3.15) and let
§=-bld+e)/la~c(d+e)/a)?. Forthe values of u. b. c. d and e of the upwind scheme, the sequence
(3.16) is convergent with limit o. For the values of the centered difference scheme, the sequence

(3.14) is convergent to a provided that & > —-}. a-cld+e)/a>0and 200 —a+c(d+e)/a 2 0.

The limiting values are

=24+ |p + po for centered differences,
a=2(1+py+p2) for upwind differences.
0
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Proof. The values of a for the two schemes are obtained by substituting into (3.15) the values of a. b.
c. d and e from Section 2. For the upwind scheme. as in the proof of Theorem 3.2, a~c¢{d+¢e)/a > 0

follows from direct substitution. The condition & > —i is equivalent to

1 2(1 + 2p2)\? 1+ 2pg) 2
2(1+2p1)52<4+2p1+2p2 - —ap—)> =\2tpm+p-—— ).

But a > 2, so that

3
>—+p1.

1+ 2pg
Ztptp-———— 25

Consequently, it suffices to show that (%-i—pl)? > 2(1+2py), which follows directly. For the centered -

scheme, we are only concerned with values of p; and ps for which a — ¢{d +¢)/a > 0 and £ > —-%.

Applving Theorem 3.1 to both difference schemes, the sequence defined by (3.16) is convergent

with limit

(a=cld+e)/a)+ Jla~c(d+e)/a)? -~ 4b(d +¢)
2

a =

The proof that & = o is identical to the analogous proof of Theorem 3.2. The condition 20 — a +

c(d + e)/a > 0 again follows for the upwind scheme from direct compntation.

The extra assumptions made for the centered difference scheme in Theorem 3.3 are not valid
for all real p; and py. The following result gives sufficient conditions for the inequalities to hold.
We defer a proof to the Appendix. An illustration of these values is shown in Figure I. Note
that for most values where Lemma 3.1 does not hold. either py or pg is large, and these values are
of somewhat limited practical interest [19]. See the Appendix for some other comments on these

values.

Lemma 3.1. For the values of u. b. ¢. d and e of centered difference scheme, the inequaljties & > - %

a—rcld+e)fa>0and 2a —a+c(d+ e)/a >0 hold for all py and pp satisfving
1.3<py<Sandp > -1l.or
2. -1 < pp €3 and p, arbitrary: or

3. p2 < -1 and either p; < %(1 —po) orpp 22— pa.

We define the constant coefficient ILU and MILU factorizations as in (3.1). except we take
the diagonal entries {a;} to have the limiting values {a} of Theorems 3.2 and 3.3. We ‘fenote the
off-diagonal entries J;. 5. &; and n; of the constant coeflicient factorizations by 3. 5. » and .

respectively.
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Eigenvalues of

Real Parts of Eigenvalues

Iterations of

Iterations of

P . p=Ph Symmetric Part of Operator Orthomin(1) GMRES(20)
Leftmost Rightmost Leftmost Rightmost o
20 625 .159E0 J11E1 .694E0 .110E1 19 11
30 9375 .696EQ .102E1 949E0 .102E1 6 6
40 1.25 -.148E1 .548E1 JO39E0” .119E1 17 8
50 1.5625 -493E2 O61E2 .866E0" .138E1 20 11
60 1.375 -.393E3 401E3 .800E0" .152E1 20 13
100 2.1875 -.393E5  .393E5 .621E0" 219E1 oc 27
150 4.6875 -.520E6 .520E6 .466E0" .702E1 00 74 1
L75 5.4688 -.115E7 A15E7 -.980E2 .445E1 20 > 100 |
200 6.25 -.223E7 222E7 -.775E4 .553E1 0 > 100
25 | 70813 | -495E7  47TET | -.177E6  Overflow > x
Table 3: Eigenvalues and performance of iterative solvers,
centered differences, P, = P, = P. h = 1/32, ILU.
leftmost eigenvalues of the svmmetric part change in sign and the performance of Orthomin(1)
Jegrades. The diminished effectiveness of GMRES(20) coincides more closely with instability of
the preconditioning than in the previous example, although the eigenvalues of A again appear to
be less sensitive than those of the symmetric part. *
B Eigenvalues of Real Parts of Eigenvalues [terations of [terations of
P | p=rPh Symmetric Part of Operator Orthomin( 1) GMRES{20)
5 Leftmost Rightmost Leftmost Rightmost ,
30 1.5625 433E-1 .156E1 .863E0 .135E1" 32 19
60 1.875 415E-1  .177El .807E0* .129E1* 32 19
(00 i 2.1875 .340E-1 .380E1 .562E0" .219E1 43 31
(10 1 3.4375 .320E-1 D12E1 S75E0" 264E1 14 13
120 3.75 289E-1 T44E1 527E0° 327E1 63 55
130 4.0625 -.17T6E1 JA21E2 .D47E0” 418E1 33 76
(40 4.375 -.099E1 .242E2 .954E0" .548E1 ¢ 9%
150 4.6875 - 481E2 681E2 BO9E0" J02E1 x > 100
175 5.4688 -.261E4 251E4 -.089E2 445E1 e > 100
200 6.25 -.764E5 .G8TES -.T75E4 .553E1 | x > 100
225 7.0313 -.125E7 107E7 - 177E6  Overflow ! 5 > 100
Table 4: Eigenvalues and performance of iterative solvers.
centered differences. — Py = P, = P. h = 1/32, ILU.
Tables 5 and 6 show the results for problems from the third and fourth classes. resnectively:
centered differences, MILU preconditioning, and either py = po =p > 0or p= —p; = po > 0. For

*Of course, the real parts are not the only indicators of large eigenvalues. Although the Chebyshev-Arnoldi method ts not

specifically designed to find eigenvalues with large imaginary parts, the Arnoldi computation does compute a set of vatimates

whose real parts lie between the extreme real parta. We did not observe any such eigenvalue estimates with imaginary parts

that were signiticantly larger than their »xtreme real parts for sither of the first two examples
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and U/-Tr have the same stability properties as L='v and U~ 'v. respectively.) The stopping cri-
terion for the eigenpair estimates (A, v) is ||Av — Av|| < 107 where ||v|| = 1. (For entries in the
tables below marked with an asterisk (). convergence of the eigenvalue computations was slow
and the stopping criterion was not satisfied. In these cases, the extreme eigenvalues are not well
separated. but the values shown give a reasonable idea of the approximate values of the set of
extreme eigenvalues [16].)

For positive integer k. Orthomin(k) and GMRES(k) generute a sequence of approximate solu-
tions {z;} to (2.2) that minimize ||g — Ar;|| over a space of dimension at most k+1 [6. 17]. Recall
t':at Orthomin(k) is known to converge only when the coefficient matrix has positive-definite svm-
metric part [6]. In our experience, Orthomin(k) is more robust when more directions are used:
we use k=1 to try to identify when a preconditioning is weak. GMRES(k) will solve arbitrary
nonsingular problems for large enough k, although for any given value of k it is only guaranteed to
compute a sequence of iterates with nonincreasing residuals. For testing these methods, the right
hand side of (2.1) was chosen so that (2.4) is the continuous solution, and the initial guess for the
discrete solution was zero. as in Section 2. In the examples below, we allowed these methods to
run for at most 100 iterations, and oo indicates that the residual norms {||7;||} stopped decreasing
at some point during the run.

We first consider examples from the four classes of problems derived from centered differences
at the end of Section 4. In Table 3, we treat the first class: centered differences, py. p; > 0. ILU
preconditioning. For fixed & = 1/32, we examine various values of P = P, = P, > 0. with p = Ph.
The stability boundary for this set of problems is p = 1. The most dramatic correlation between
stability and performance is in the eigenvalues of the svmmetric part. As p increases through 1.
the leftmost computed eigenvalues change from positive to negative, and both extreme eigenvalues

grow rapidly as p increases. Failure of Orthomin(1) to converge to the correct solution coincides

almost exactly with the set of values p giving negative eigenvalues for the svmmetric part. The
igenval ' for tl ix ~1itself > be less sensitiv stability, althoug}
eigenvalue computations for the matrix AQ ™" itself appear to be less sensitive to stability, aithough
for p >> 1 the leftmost real parts also become large and negative. Similarly. the performance of

GMRES(20) degrades for large values of p. but it is less sensitive than that of Grthomin(1}.

In Table 4. we consider examples from the second class of problems of Section 4: centered
differences. py < 0. p2 > 0. ILU preconditioning. Again. we fix h = 1/32 and vary P = - P, =
P, > 0. The stability bound for this set of problems is p = Ph = 2+ /3 ~ 3.732. The results

are similar to those of the previous example. As p increases through the stability bound. the
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We return to the question of multiple roots for MILU and centered differences. Recall that
the characteristic polynomials may have multiple roots in the second or fourth quadrants for some
choices of p; and p; for which both have modulus greater than one. However, as we have just
shown, the requirement that the maximal root be bounded by one is also violated for these values
of py and p;. so that the presence of multiple roots does not affect the stability analysis.

5. Upwind differences. By assumption, we are examining the upwind scheme only for p; > 0,
p2 > 0. For the lower triangle of both the ILU and MILU factorizations, 3 = —(1+ 2p;). v =
—(1+ 2p9). Both these quantities are negative, so that Case 1 of Theorem 4.1 applies. For ILU,
a=1+&+ 1+ . where = 1+p; +p2 > l.and \u(l) = 1 =&+ V1+ &2 > 1. Hence, the lower -
triangular solve is always stable. For MILU, o = 2¢, so that A,(1) = 0 and the lower triangular
solve is also always stable. For the upper triangle of both factorizations, § = ~1/a.np = —1/a. so

that Case 1 of Theorem 4.2 applies. But

2 2
1- >1- >0
() =1- 22 1+ &+ 1+ &2 2+ V2 for ILU
n =47 - = .
a 1 - _‘Z_ > 0. fOI‘ A\‘[ILU
28 7

Hence. for the upwind scheme. both upper triangular solves are always stable.

5. Correlation of Numerical Performance and Stability

In this section, we show that there is a correlation between the numerical properties of the
true preconditioned operators and e stability of the constant coefficient preconditioning solves.
Let 4 denote the preconditioned operator, AQ~!. For various values of the parameters p, and p;

{determined by P,. P and h). we examine four properties of the preconditioned matrix and linear

system:
1. the extreme eigenvalues of the symmetric part (A + A7)/2: .
2. the extreme real parts of the eigenvalues of A: )
3. the performance of Orthomin(1) with preconditioning by the incomplete LU factorizations:
4. the performance of GMRES(20) [17] with preconditioning by the incomplete LU factorizations.

All computations were performed on a VANXI11-780 in double precision (55 bit mantissa).

The eigenvalues were computed by Arnoldi’'s method with Chebyshev acceleration. which can ' ]
compute eigenvalues with algebraically largest or smallest real parts efficiently if these eigenvalues ‘
are well separated from the interior eigenvalues [16]. This method repeatedly computes matrix- ]
vector products of the form AQ~'v and. for the symmetric part. (AQ~')7. so that the precondi- ) }

tioning triangular solves figure prominently in the computations. (The transpose operations L=7»

29
22

o - .t .
DR R R IR IR T IR SO I
AP, PR ) St a9 3 q g 3




4. Centered differences, py < 0, p2 > 0, MILU. For this class of problems, v < 0, and either
3 < 0for -1 < p; <0and Case 1 of Theorem 4.1 applies; or 3 > 0 for p; < —1 and Case 3 applies.
In the first instance,
0 if pp > -p
A(l)=a+ 8+~ =
=2(p1+p2) ifp2<—pr.
Both these expressions are nonnegative, so that the lower solve is stable for =1 < p; < 0. In the

second instance,
2(1+p1)  if po

v

-Dn

An(-l)=a-3+~= {
2(1~pg) ifp2<—pr.

The first expession is negative for p; < —1, and the second expression is nonnegative for 0 < py < 1.
Thus, the lower solve is stable for =1 < p; < 0 or 0 < ps < 1. The analysis for the upper triangle

is similar and gives the same stability region.
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Figure 8: Stability regions for the MILU factorization.

The stability regions for problem classes 3 and 4 are shown in the first and second quadrants
of Figure 8. For both ILU and MILU. the stability regions in the third quadrant are the reflections .
over the diagonal line po = —p; of the regions in the first quadrant, and the stability regions in '
the fourth quadrant are the reflections over the line ps = py of the regions of the second quadrant. ]
This can be seen by replacing p; and ps by —q; and —gs. respectively in the analysis of the four

examples above. Figures 7 and 8 show the full stability regions.
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The stability region for this problem class is the intersection of the regions for the lower part »
and the upper part. This region is shown in the first quadrant in Figure 7. The dashed curve is
the boundary of the stability region for the upper triangle, showing that the lower solve has more
stringent stability restrictions than the upper solve. In the simple case of p; = p2 = p, the stability ‘
bound is p < 1. »
2. Centered differences, py <0, po 2 0, ILU."The analysis for both the lower triangle and the
upper triangle is essentially the same as that given for the upper triangle in the previous example.
For both solves, the stability region consists of the set of points (p;,p2) in the second quadrant of
R? satisfving ’

pQSM
p1+2

This region is shown in the second quadrant of Figure 7. In the case of —p; = py = p, the stability

bound is p £ 2 + /3.

»
10
s ;- ’
0 -
I »
-5 |-
[
I »
Y. S E U U SR S SRR
-10 -5 0 5 10 .
Figure 7: Stability regions for the ILU factorization. .
l
3. Centered differences, py, po > 0. MILU. For the lower triangle, Case 1 of Theorem 4.1 » |
applies. and A,(1) = 0. Hence. the lower triangular solve is always stable. For the upper triangle,
all four cases can occur, and the solve is stable in each case. The analysis for all four cases is
straightforward. We present Case 3 as representative: § > 0 (py 2 1) and 5 €0 (0 € p2 £ 1). The
solve is stable for even n if and only if up(—1) > 0. But L !
app(-1) = 2(1+p2) 2 2 > 0.
20
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For the upper triangle, all four cases of Theorem 4.2 can occur, with § £ Oifand only if py <1
and n < 0 if and only if p; £ 1. We examine Case 2 in detail, noting without proof that the upper
triangular solve is stable for the other three cases. Case 2 corresponds to {(py,p2)|p1,p2 > 1}. By

Theorem 4.2, the solve is stable for odd n when u,(—1) € 0. After scaling by ¢, this is equivalent

pr+p2—4< 2+ p?+pl (4.8)

There are now three main subcases. For Case 2a, if p; + po — 4 < 0, then (4.8) is trivially true.

to

Otherwise, squaring both sides and simplifying gives

pa(py —4) < 4py - 7

as the condition for stability. This is trivially true when p; = 4. Cases 2b and 2c are determined
by the two branches of the hyperbola p2 = (4p1 — 7)/{p1 — 4). Case 2b consists of the set of points
(p1,p2) in the upper right quadrant of R? for which p; < 4 and py > (4p) — 7)/(p1 — 4). Case 2c
consists of the points in the upper right quadrant for which p; > 4 and p» < (4p; — 7)/(p1 — 4).

A diagram of the stability region in the p;-ps plane for the upper solve, with labels for the various

cases and subcases, is given in Figure 6. (The hyperbola branch for Case 2b is not shown.)
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Hence, with the alternative ordering, Case 4 is equivalent to Case 3 with the roles of 3 and ~
interchanged. The lower triangular solve is stable for even n if and only if ;\n(—l) > 0. (The proof
that A, also has no multiple roots is the same as that for A,; we omit the details.)

We summarize these observations as follows:

Theorem 4.1. Necessary and sufficient conditions for the lower triangular solve to be stable are:

Ll

for3<0,v<0: M(l)=a+3+~v20;

[

.for 320,v2>0andn odd: Ap(~-1) = —a+ 3+~ <0;
3. for320.v<0andneven: A\p(-l)=a-3++2>0;
4. for 3<0,~v >0 and n even: 5\"(—1)=a—~/+x320.
The identical analysis can be used to determine the stability of the upper triangular solve,

based on the largest characteristic root of u, in (4.5). We again distinguish among four cases,

depending on the signs of § and 7.

Theorem 4.2. Necessary and sufficient conditions for the upper triangular solve to be stable are:
Lfor§<0.n<0: p(1)=1+6+45 2> 0:

.for 6 > 0,n >0 and n odd: pup(~1)=-1+6+5n<0;

1]

W

.for6 >0,n <0 andneven: up(—-1)=1-6+n > 0;

o

.for5 <0,n >0 and n even: fa(—1)=1-n+6 >0, where in(2) = 2" + nz""! + 6.

Given values of p; and p; (determined by P;. P, and h) and choice of difference scheme.
Theorems 4.1 and 4.2 can be used to determine whether the ILU or MILU factorization results in a
stable preconditioner. We now characterize some particular classes of problems and factorizations.
As we will show in Section 5, the conclusions of the Theorems also appear to hold for the parities of

n not covered by the analysis. Hence, in the following we do not limit our conclusions to particular

parities. Recall that for the centered difference discretization, 3 = ~(1 + py), v = —(1 4 pa).
6=(=1+p1)/xand n = (-1+ps)/a. T

1. Centered differences, py, p2 > 0. ILU. By Theorem 3.2, « = 2 + \/mf:_pg For the " :ff‘:
lower triangle, 3 < 0 and v < 0, so that Case 1 of Theorem 4.1 applies. The lower triangular solve ._ o]

is stable if and only if

M(l) =\/24+pi+p2~(p1+ p2) 2 0. (4.7)

After simplifying, (4.7) reduces to pyps < 1. which is the necessary and sufficient condition for

stability of the lower triangular solve,
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Figure 5: Shape of characteristic polynomials. 3> 0. ; > 0.

Left side: n odd. Right side: n even.

where 3 and 4 are less than or equal to 0. Up to a sign, the polynomial on the right of (4.6) has
the form considered for Case 1. Hence, the analysis for Case 1 implies that for odd n, the lower
triangular solve is stable if and only if A,(—1) < 0.

Similarly, for Case 3, when n is even,
M(=2) =az, + (=8)z"" + 4,

which again has the form studied for Case 1. Thus, in Case 3 with n even, the lower triangular
solve is stable if and only if A,(-1) > 0.

Finally. for Case 4, we consider a recurrence analogous to (4.2) corresponding to a reordering
of unknowns. Recall that in Section 2 we assumed that the unknowns are ordered by lines along
the x-direction. For the lower triangular solve of (4.1), the computations for the unknowns vy are
unchanged (except for the order in which they are done) if the unknowns are computed along the
lines in the y-direction. If we renumber the unknowns for the lower triangular solve according to
this ordering. then the typical recurrence in the new ordering is

avy + vjo + Jvjon = wy,
and the corresponding characteristic polvnomial is
-1

A(z) = az" + 2" 3
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The same argument works for the upwind scheme. for both ILU and MILU. For un, the only
possiblity for a nonzero multiple root is z** = —(n ~ 1)6/n, and the identical argument shows that
|z**| < 1. For MILU and centered differences, the same reasoning shows that there are no multiple
roots if p; and ps have the same sign, or if either |p;| < 1 or |p2| < 1. There can be multiple roots
otherwise. However. we will show at the end of this section that such roots play no role, so in the
following we will ignore the possibility of multiple roots.

It is sufficient, then, to examine the moduli of the largest roots of the two characteristic
polynomials. For A,, we distinguish among four cases:

1.3<0, y<0; 3.3>0,v<0;

2.320,v20; 4. 3<0,v>0.

For Case 1 and nonzero 3 and ~, it can be shown using elementary calculus that the graph of the
real values of A, has one of the two shapes given in Figure 5, depending on whether n is odd or
even. In particular, A\,(0) = v < 0, A,(¢) has a local minimum at ¢, = —%g > 0, and A,(¢)
is strictly decreasing for ¢ between O and ¢, and strictly increasing for ¢ > t,,. Therefore. A, has
precisely one positive real root, r, and A,(¢) > 0 for all ¢ > r. The same argument works for 3 < 0,
~y=0. If 3 =0 and v < O, then A,(t) is strictly increasing for ¢ > O and again has precisely one
positive real root, r. (When 3 = 4 = 0, 0 is an n-fold root of A, and the solve is stable. In this
trivial case, the lower triangular matrix is actually a diagonal matrix and we will not discuss it
further.)

We claim that the largest positive root r is a root with largest modulus. For if 7e® is any root

with largest modulus, then by definition 7 > r and
afte'™ = _Jj,;yl-lei(n—l)ﬂ - 5.
Taking the modulus of both sides and applying the triangle inequality,

af = | _ ﬁf_n—lei(nol)ﬂ _ ,\/‘ < Ildh;n—l + hl*

l.e. An(F) € 0. Since 7 2> 0, it follows that 7 < r. Consequently, r = r. Whether or not r is
greater than 1 can be determined from the sign of A\, (1). For if A,(1) < O, then since 1 is a positive
number, it follows that 1 must lie to the left of r. i.e. r > 1. Conversely, if A,(1) > 0, then r < 1.
Hence, for Case 1, the lower triangular solve is stable if and only if A,(1) > 0.

For Cases 2 — 4, we can only give a partial analysis, which characterizes stability only for

certain parities of n. Consider Case 2 and n odd. Then

An(=2) = =(az" = 32" = 5) = =(az" + 32" +4), (4.6) BRI
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Consider the homogeneous case, w = 0. If A, has n distinct roots {z1,..., 2n}, then it is well known

(see e.g. [13]) that for j > n the homogeneous solution of (4.2) is -
vj = 012{ +---+ anz;s (4.3)

where cy,...,cn are determined by the initial values vy,...,v,. If some root z, of A, has modulus
greater than I, then 2 will grow as j increases, and any error in ¢, (caused, say, by an error in the
initial conditions) will result in increasing errors in the solution (4.3). If a root z, has multiplicity

m, then the homogeneous solution also contains linear combinations of
JG=1)G-t+1)z™ t=1,...,m—1 (4.4)

as components; if z, has modulus greater than or equal to 1, then any errors in the coefficients of
(4.4) will also be enhanced with increasing j. Therefore, we say that the lower triangular solve is
stable if all the roots of its characteristic polynomial are less than or equal to 1 in modulus and no
root with unit modulus has multiplicity greater than 1. It is unstable otherwise.

The typical computation in the upper triangular solve is

vy + V41 + Vjen = Wy,

where v;4, and v, ., are given. To fit this computation into the setting of recurrences, we renumber
thke unknowns so that they are computed in order of increasing indices, i.e. let i; = vy_,. Then

the upper triangular computation has the form
i'j + 5i’j_1 + ‘70,'..,. = WN-j, ;‘"“‘
and the associated characteristic polynomial is
pn(z) ="+ 62" V4 =0. (4.5)

We say that the nupper triangular solve is stable if all the roots of its characteristic polynomial have

modulus less than or equal to 1 and no root with unit modulus has multiplicity greater than 1. It

is unstable otherwise.
We first note that for the ILU factorization and for the MILU factorization with the upwind
scheme, there are no multiple roots of unit modulus. Any multiple root of A\,(2) must also be a

root of M (2) = " %(naz + (n -~ 1)3). Thus, the only possibility for a nonzero multiple root is

z* = —(n — 1)3/na. For ILU and the centered difference scheme,
|z‘|<|—/3—‘= |1+p11| <1
o 2-+-\/'.2-+—pzl-+-p22
15
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We have not seen any examples in which the sequences (3.9) and (3.16) are convergent but the
true diagonal sequences {a;} are not convergent. However, we do have cases where convergence
of the diagonal sequence is slower than in the examples above. For example, Figure 4 graphs the
computed and limiting values for P, = —-50, P, = 50, h = 1/32, centered differences with the
MILU factorization, from four blocks of the factorization. Within each block, the diagonal values
approach a limit. and as the factorization proceeds, the limit for each block gets closer to the limit
of Theorem 3.3. However, the initial values within each block oscillate, and these oscillations are
both larger in magnitude and occur at higher indices (mod n) within the block at the later stages

of the factorization.

4. Stability Analysis

In this section, we examine the numerical stability of the lower triangular and upper triangular
solves performed with the constant coeficient factorizations introduced in Section 3. Given an
incomplete factorization LU, the preconditioning operation consists of a pair of triangular solves

of the form

Lv=w, Uv=w. (4.1)

Tvypically these operations are performed once each per iteration of the basic iterative method.
Consider the lower triangular solve. The typical computation for the j'th entry of v has the

form

1
vj = —(w; — Bvj_; — Yvj_n).

R

where v;_; and vj_, have been previously computed. Equivalently. most entries of v satisfy the

n'th order inhomogeneous recurrence relation
avy + Jvj_| + YU = wy. (4.2)

Our stability analysis is based on an analysis of this recurrence, whose solution is uniquely defined
once n initial values, say v,...., v, are given. (We note that as in computation of the factors. not
every step of the backsolve satisfies this recurrence, since there are 2n—1 cases corresponding to grid
points next to the boundary where the computation of v; is simpler.) We wiil define the stability
of the lower triangular solve in terms of properties of the characteristic polynomial associated with
(4.2). which is given by

An(2) = az™ + 32" 44
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Figure 1: Values of p; and ps where Theorem 3.3 holds for
centered differences and MILU.

The results of the theorems do not rigorously prove that the true factors converge in any sense
to the constant coefficient factors. The simplifying assumptions that the diagonal values from the
previous blocks are constant and that they take on the values derived from solving the specified
quadratic equations are not true. (For example, the limiting values for the first block are in general
different from the quadratic roots used in the theorems.) Moreover, the convergence results do
not say anything about how close the first n values are to the limits, which is the only usefui
information in this context. Nevertheless, our numerical experience supports the idea that the
constant coefficient factors are reasonable approximations. In Figure 2, we graph the compnuted
values of the ILU diagonals {a,} and the limiting value « of Theorem 3.2, for a 15 x 15 grid
(h=1/16) and P, = P> = 25 (so that p; = p2 = 1.5625). As expected, the limiting value for the
first block is different from «. but starting from the third block, most of the subsequent diagonal
values are virtually indistinguishable from «. Figure 3 graphs the analogous data for the same
problem and difference scheme with the MILU factorization. In this case, the values from the last
block and the last values within the other blocks differ from the limit because they satisfy a different
recurrence (see {3.2)). For the same problem with the upwind schemes, both factorizations show
the same qualitative behavior. Similarly, for centered differences on a finer grid with the same

values of py and p2 (h = 1/32 and P; = P, = 50). the qualitative behavior is identical.
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all the values considered, Theorem 3.3 holds. The analysis of Section 4 predicts that there are no

stability restrictions for the problems of Table 5. The numerical results are consistent with this:

all of the extreme eigenvalues vary smoothly with p, and neither iterative method has difficulty

solving the preconditioned problem. (We will comment below on the change in sign of the leftmost

3 eigenvalue of the symmetric part at p = 6.25.) The stability bound for the problems of Table 6
is p = 1. For this set of problems, all four performance indicators change dramatically when p

increases through 1. (Note in particular that the values of p are significantly higher in Table 5 than

[ in Table 6.)

! | Eigenvalues of Real Parts of Eigenvalues Iterations of Tterations of

P p= Ph Symmetric Part of Operator Orthomin(1) GMRES(20)
Leftmost Rightmost Leftmost Rightmost ;
30 9375 .996E0 .106E1 .100E1 .104E1 4 4 |
50 1.5625 .681E0 .103E1 .780E0 .100E1 7 7 |
100 2.1875 .370E0 121E1 479E0" .100E1 12 12 |
150 4.6875 141E0 .136E1 .352E0 .100E1" 16 15 i
200 6.25 -.100E-1 .146E1 251E0 .100E0 19 18 l
225 7.0313 -.663E-1 .150E1 .215E0 978E0" 20 19 ‘

Table 5: Eigenvalues and performance of iterative solvers,

centered differences, P, = P, = P, h = 1/32, MILU.

Eigenvalues of Real Parts of Eigenvalues Iterations of Iterations of |

P p= Ph Symmetric Part of Operator Orthomin(1) GMRES(20)
Leftmost Rightmost Leftmost Rightmost

30 .9375 .845E0 .149E2 .100E1 .323E1 52 35 ‘
31 .9688 .834E0* .138E2 .100E1 .364E1 52 35
32 1 .819E0* .134E2 .100E1 .395E1 51 36
33 1.0313 -.134E4 .159E3 -.T08E0 .874E1 o0 55 |
34 1.0625 -.138E4 .138E4 -.112E3 .675E1 o0 > 100
36 1.125 -.287E3 .299E3 -.112E2 442E1 o0 > 100
50 1.5625 -290E11  .290E1l -.343E2 .567E3 o0 o

Table 6: Eigenvalues and performance of iterative solvers.

centered differences, ~P) = P, = P, h = 1/32, MILU.

As we noted in Section 4. some of the stability analysis of Theorems 4.1 and 4.2 applies only for
certain parities of n, but the numerical performance seems independent of parity. As an example.
consider the case of ILU preconditioning with centered differences in the second quadrant (see
Figure 7). The analysis at the stability boundary makes use of Case 3 of Theorem 4.1 and Case 4
of Theorem 4.2, both of which require n to be even. The performance of ILU shown in Table 4 is

for n = 31, i.e. n odd, suggesting that parity plays no role. Further evidence is given in Table 7,
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[ Eigenvalues of Real Parts of Eigenvalues [terations of Iterations of
P p= Ph Symmetric Part of Operator Orthomin(1) GMRES(20)
Leftmost Rightmost Leftmost Rightmost
110 3.33 .309E-1 .468E1 .582E0" 249E1 48 38 T
120 3.64 .287E-1  .659El .555E0* .305E1 58 55
130 3.94 -.506E1 .102E2 .590E0* .385E1 86 75
140 4.24 -.591E1 .187E2 .631E0" .500E1 > 100 81 |

.......

Table 7: Eigenvalues and performance of iterative solvers,

centered differences. — P = P, = P, h = 1/33, ILU.

which shows that for values of p near the stability boundary the performance for n = 32 (h=1/33) .

is essentially the same.

Our previous experience with these preconditionings has been on problems with just one first

derivative term present, for which the coefficient is positive. Both preconditioners have been very

successful in solving such problems {7, 8]. The stability analysis of Section 4 suggests that neither

preconditioning suffers from instability in these cases, or for problems where upwind differences are

used. Tables 8 and 9 shows that the extreme eigenvalues of the symmetric parts for some problems

of these types are well behaved, as expected.

PO, P Gl Gl W S SIE T Ll Sl Wl W

ILU MILU
P, p2 = Pyh Leftmost Rightmost Leftmost Rightmost
30 9375 .858E-1  .123E0 .242E0 .305E1
50 1.5625 172E0 I32E1 .240E0 .259E1
100 2.1875 .386E1 147E1 .322E0 213E1"
150 4.6875 .437E0 .152E1° .398E0 .192E1°
200 6.25 477E0 .153E1"* 455EL 178E1
225 7.0313 494E0*  .152El 477E0 .173E1"

Table 8: Eigenvalues of the symmetric part, centered differ-

ences. P, =0, h =1/32.

ILU ' MILU
P p= Ph Leftmost Rightmost Leftmost Rightmost
30 9375 553E-1  .118El .629E0  .254E1
50 1.5625 .803E-1  .115E1 .846E0  .198E1l
100 2.1875 .150E0 J111E1L 951E0 .151E1
150 4.6875 .218E0 .100E1 973E0  .135El
200 6.25 281E0 .107E1 980E0  .126El
225 7.0313 .309E0 .106E1 O83E0  .124E1

Table 9: Eigenvalues of the symmetric part. upwind differ-

ences, P =P, =P>0.h=1/32.
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Note that we are not addressing the question of accuracy of the incomplete factorization, and

{

&‘ : we cannot be certain that it is instability rather than inaccuracy that is causing the difficulties -
exhibited in Tables 3, 4 and 6. However, only in cases in which at least one of the triangular solves

is unstable in the sense of Section 4 do the computed eigenvalues increase dramatically as they

do in these three tables. We have encountered problems with unfavorable eigenvalue distributions

-
S
N
h that appear to be due to inaccuracy of the incomplete factorization. One such case is the example
of Table 5: the eigenvalues of the symmetric part turn negative when p > 6.25, but they do not j
change dramatically in magnitude with small changes in p. Another example is as follows: we

let h = 1/64 and P, = 100 be fixed so that p; =

1.5625, we vary P, < 0, and we use centered °
differences and the MILU factorization. (This problem is a member of the fourth class of problems
analyzed at the end of Section 4.) The extreme eigenvalues of the symmetric part are shown in
Table 10. The leftmost eigenvalues are negative for all values of p; considered, but they are fairly

well-behaved until the stability bound of p; = —1 is reached, after which they quickly diverge.

B n = Pk Leftmost Rightmost k
-10 -.1563 -.633E0 402E1 )
-20 -.3125 -.992E0 .S09E1
-40 -.625 -.196E1 .886E1 I
-60 -.9375 -.955E1 221E2 )
-64 -1.0 -.282E2  .546E2 )
-68 -1.0625 -.463E3 .529E9 ’
72 -1.125 .TI5E6  .716E6 ]
-76 -1.1875 -.152E9 .152E9 "
Table 10: Eigenvalues of the symmetric part, centered differ- :
ences, P, = 100, h = 1/64, MILU. 1‘
We conclude with two observations that we have been unable to explain. First, in Tables 3 and
4, the extreme real parts of the eigenvalues of the operator AQ~! are the same for large p, although
the signs of p; are opposite. Indeed, we have observed in some other tests with centered diff-rences
and ILU that for large p, and p;, the extreme eigenvalues of AQ~! appear to be independent of
the signs of pr and p2.* Second, for very large values of the parameters p; and p2 in Tables 3. 6
and 10, the computed extreme eigenvalues of the symmetric part are opposite in sign but nearly
¢ysal in magnitude. We do not have good explanations for these phenomena.
*We can show that if |py} = |p}|. |p2] = |p%|. then the error matrices R = Q — 4 and R’ = Q' — A’ for the constant
coefficient factorizations are similar under a diagonal similarity transformation. This result holds for both the ILU and MILU
factorizations. but we have not been able to make use of this observation.
27
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6. Appendix

f‘ In this section we prove Lemma 3.1. To simplify notation, in the proof we use the symbols “x"

and “y” instead of “p,” and “ps.” The three inequalities to be considered are then:

1 1/, (1+y2- (Jc+y))>2
£> —= - < - - 3
(1+y)2~-(z+y))
_ . _ 0: 6.2
a-cld+e)/a>0: 4 prr (6.2)
(L+y)(2-(z+y) (6.3)
- >0: > 0.
20 —a+c(d+e)/a20: 2z+y|+ 2+ |7+ y] 20
[" We partition the plane into five regions:
lL.z+y <0

2.0<zrz+y<2andl+y>0;
3.0<r+y<2and 1+y <0
4.2<r+yand1+4+y20;
52<r+yand1+y<0.

These regions are depicted in Figures 9 - 11. Note that in Region 1, (2~ (z+¥))/(2+ |z + y|) = 1.
so that all three inequalities are simpler in this case.

In Region 1, (6.1) is equivalent to

1 1, 1,
W =E--—zr—- < -y¢ > 0.
o(z,y) 1 z 21 +Iy+4y >

It is straightforward to show that ¢ = 0 and V¢ = O on the line y = 1 — 2z, and V20 is positive

semi-definite everywhere. But o is quadratic, so for any X = (x,y)T and Xo = (zo.y0)7 such that

Yo = 1 — 2,
1

6(X) = (X - Xo)T(V26)(X - Xo) 2 0.
In Region 2, the right hand side of (6.1) is greater than

4-(1+y)(2-(z+y).

which can be seen to be greater than or equal to (1 + x)(2 - (z + y)) by direct computation. In

The same argument works for (all of) Region 5. We have not been able to establish (6.1) for Region

28

Region 4. the left hand side of (6.1) is negative when x > -1, so that the inequality holds trivially.

3 or for Region 4 with x < —1. although numerical tests suggest that it also holds in these regions.
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Figure 9: Values of z and y where inequality (6.1) holds.

The shaded area in Figure 9 shows the set of points in the plane for which we have demonstrated
that (6.1) holds.

Inequality (6.2) holds immediately in Regions 3 and 4, since the quantity subtracted is negative.
The inequality reduces to y < 3 in Region 1, and for Region 2, using the fact that (2— (z+y))/(2+
iz + y|) < 1, the same condition is sufficient. For Region 5, after being scaled by 2 + z + y, the A E
right hand side of (6.2) can be shown to be greater than . A
y
8+3z+y=8+z+y+2z> 10+ 2z > 13,
since r+y > 2 -y >1land z>2-y2 3. Figure 10 shows the set of points where (6.2) holds.
Inequality (6.3) holds trivially in Regions 2 and 5. In Region 1 the inequality reduces to
y < 1 = 2z. In Region 3, the fact that (2 - (2 + ¥))/(2 + |z + y]) < 1 makes the right hand side )
1
greater than 2z + 3y + 1, which is greater than O for y > —%(1 + 2z). This determines a small
subset of the region. Finally, in Region 4,2 + |z + y| > 4, so that if —1 < y £ 7, then o
Uty o, -
2+ |z+y| "
Consequently the right hand side of (6.3) is greater than ;:j:i
o
2{z+y)+22-(z+y)=4>0. j
Hence, (6.3) holds in the shaded region of Figure 11. i _".::
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Figure 11: Values of z and y where inequality (6.3) holds.

The region specified by Lemma 3.1 and Figure 1 is the intersection of the regions of Figures 9 Co
- 11. Recall that the inequalities of the lemma give sufficient conditions for the convergence result S
in Theorem 3.3 for MILU and centered differences. Numerical evidence suggests that conditions

(6.2) and (6.3) are also necessary for the diagonal sequences in the (true) MILU factorization to

30
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be convergent. For example, the values p; = —4 and py = 4 violate condition (6.2), and with these
values (from h = 1/32, P, = —128 and P, = 128), the MILU diagonal sequence appears not to
be convergent. Similarly, the values py = 2 and p; = —2 violate condition (6.3), and the MILU
sequence is also not convergent for them (from h = 1/32, P, = 64 and P, = —64).
Acknowledgements. The author would like to thank Stan Eisenstat for a part of the proof of
Case 1 of Theorem 4.1, and Youcef Saad for his help in using his Chebyshev-Arnoldi eigenvalue

routines for computing eigenvalues and for pointing out reference [21].
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